推广 热搜: 作文  学习方法  小学  方法  语文  中考  励志  初中学习方法  高考  高中学习方法 

高一数学集合与函数定义要点,叫你很好过每个重点

   日期:2021-02-03     来源:www.vqunkong.com    作者:智学网    浏览:704    评论:0    
核心提示:生活要敢于理解挑战,经受得起挑战的人才可以领悟生活非凡的真谛,才可以达成自我无限的超越,才可以创造魔力永恒的价值。以下是

生活要敢于理解挑战,经受得起挑战的人才可以领悟生活非凡的真谛,才可以达成自我无限的超越,才可以创造魔力永恒的价值。以下是智学网高中一年级频道为你收拾的《高一数学集合与函数定义要点,叫你很好过每个重点》,期望你不负时光,努力向前,加油!


  集合具备某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。比如:1、分散的人或事物聚集到一块;使聚集:紧急~。2、数学名词。一组具备某种一同性质的数学元素:有理数的~。3、口号等等。集合在数学定义中有好多定义,如集合论:集合是现代数学的基本定义,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的,现在集合论的基本思想已经渗透到现代数学的所有范围。

  集合,在数学上是一个基础定义。什么叫基础定义?基础定义是不可以用其他定义加以概念的定义。集合的定义,可通过直观、公理的办法来下“概念”。集合

  集合是把大家的直观的或思维中的某些确定的可以区分的对象汇合在一块,使之成为一个整体,这一整体就是集合。组成一集合的那些对象称为这一集合的元素。

  

  元素与集合的关系有“是”与“不是”两种。

  

  某些指定的对象集在一块就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具备传递性。『说明一下:假如集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教程课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男性的集合是所有人的集合的真子集。』

  

  并集:以是A或是B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以是A且是B的元差集表示

  素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}比如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那样由于A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这部分个元素,不管多少,反正不是你有,就是我有。那样说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;比如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B概念为:A?B=(A-B)∪比如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种概念是:A?B=(A∪B)-无限集:概念:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},假如存在一个正整数n,使得集合A与N_n一一对应,那样A叫做有限集合。差:以是A而不是B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不是B}。注:空集包含于任何集合,但不可以说“空集是任何集合”.补集:是从差集中引出的定义,指是全集U不是集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不是A}空集也被觉得是有限集合。比如,全集U={1,2,3,4,5}而A={1,2,5}那样全集有而A中没的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

  

  1.确定性:每个对象都能确定是否某一集合的元素,没确定性就不可以成为集合,比如“个子高的同学”“非常小的数”都不可以构成集合。这个性质主要用于判断一个集合是不是能形成集合。2.独立性:集合中的元素的个数、集合本身的个数需要为自然数。3.互异性:集合中任意两个元素都是不一样的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。

  

  并集:以是A或是B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以是A且是B的元差集表示

  素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}比如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那样由于A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这部分个元素,不管多少,反正不是你有,就是我有。那样说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;比如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B概念为:A?B=(A-B)∪比如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种概念是:A?B=(A∪B)-无限集:概念:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},假如存在一个正整数n,使得集合A与N_n一一对应,那样A叫做有限集合。差:以是A而不是B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不是B}。注:空集包含于任何集合,但不可以说“空集是任何集合”.补集:是从差集中引出的定义,指是全集U不是集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不是A}空集也被觉得是有限集合。比如,全集U={1,2,3,4,5}而A={1,2,5}那样全集有而A中没的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

  

  1.确定性:每个对象都能确定是否某一集合的元素,没确定性就不可以成为集合,比如“个子高的同学”“非常小的数”都不可以构成集合。这个性质主要用于判断一个集合是不是能形成集合。2.独立性:集合中的元素的个数、集合本身的个数需要为自然数。3.互异性:集合中任意两个元素都是不一样的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。

  

  若A包含于B,则A∩B=A,A∪B=B


  集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只不过等于集合的名字,没任何实质的意义。将拉丁字母赋给集合的办法是用一个等式来表示的,比如:A={…}的形式。等号左侧是大写的拉丁字母,右侧花括号括起来的,括号内部是具备某种一同性质的数学元素。

  常见的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的办法叫做列举法。{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的办法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的一同属性)如:小于π的正实数组成的集合表示为:{x|0

  4.自然语言常用数集的符号:(1)全体非负整数的集合一般简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合一般称作整数集,记作Z(4)全体有理数的集合一般简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(5)全体实数的集合一般简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律∩C=A∩∪C=A∪集合分配律A∩=∪A∪=∩集合德.摩根律集合

  Cu=CuA∪CuBCu=CuA∩CuB集合“容斥原理”在研究集合时,会遇见有关集合中的元素个数问题,大家把有限集合A的元素个数记为card。比如A={a,b,c},则card=3card=card+card-cardcard=card+card+card-card-card-card+card1885年德国数学家,集合论开创者康托尔谈到集合一词,列举法和描述法是表示集合的常用方法。集合吸收律A∪=AA∩=A集合求补律A∪CuA=UA∩CuA=Φ设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律A-=(A-B)∩A-=(A-B)U~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q*

 
标签: 高一
 
更多>智慧教育相关文章
考试报名
推荐图文
推荐智慧教育
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  网站留言  |  RSS订阅  |  违规举报
学知猫-成人高考,自学考试,会计职称,中小学教育培训